Banner
Home      Log In      Contacts      FAQs      INSTICC Portal
 
Documents

Keynote Lectures

Interpretability and Explainability Facets of Data Analytics: Symbols and Information Granules
Witold Pedrycz, University of Alberta, Canada

Supply Chain Before, During and After the Pandemic
Constantin Blome, University of Sussex Business School, United Kingdom


 

Interpretability and Explainability Facets of Data Analytics: Symbols and Information Granules

Witold Pedrycz
University of Alberta
Canada
 

Brief Bio
Witold Pedrycz (IEEE Fellow, 1998) is Professor and Canada Research Chair (CRC) in Computational Intelligence in the Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada. He is also with the Systems Research Institute of the Polish Academy of Sciences, Warsaw, Poland. In 2009 Dr. Pedrycz was elected a foreign member of the Polish Academy of Sciences. In 2012 he was elected a Fellow of the Royal Society of Canada. In 2007 he received a prestigious Norbert Wiener award from the IEEE Systems, Man, and Cybernetics Society. He is a recipient of the IEEE Canada Computer Engineering Medal, a Cajastur Prize for Soft Computing from the European Centre for Soft Computing, a Killam Prize, a Fuzzy Pioneer Award from the IEEE Computational Intelligence Society, and 2019 Meritorious Service Award from the IEEE Systems Man and Cybernetics Society. His main research directions involve Computational Intelligence, fuzzy modeling and Granular Computing, knowledge discovery and data science, pattern recognition, data science, knowledge-based neural networks, and control engineering. He has published papers in these areas. He is also an author of 21 research monographs and edited volumes covering various aspects of Computational Intelligence, data mining, and Software Engineering. Dr. Pedrycz is vigorously involved in editorial activities. He is an Editor-in-Chief of Information Sciences, Editor-in-Chief of WIREs Data Mining and Knowledge Discovery (Wiley), and Co-editor-in-Chief of Int. J. of Granular Computing (Springer) and J. of Data Information and Management (Springer). He serves on an Advisory Board of IEEE Transactions on Fuzzy Systems and is a member of a number of editorial boards of international journals.


Abstract
In data analytics, system modeling, and decision-making models, the aspects of interpretability and explainability are of paramount relevance, just to mention only explainable Artificial Intelligence (XAI). They are especially timely in light of the increasing complexity of systems one has to cope with.

We advocate that there are two factors that immensely contribute to the realization of the above important features, namely, a suitable level of abstraction in describing the problem and a logic fabric of the resultant construct. It is demonstrated that their conceptualization and the following realization can be conveniently carried out with the use of information granules (for example, fuzzy sets, sets, rough sets, and alike).
 
Concepts are building blocks forming the interpretable environment capturing the essence of data and key relationships existing there. The emergence of concepts is supported by a systematic and focused analysis of data. At the same time, their initialization is specified by stakeholders or/and the owners and users of data.   We present a comprehensive discussion of information granules-oriented design of concepts and their description by engaging an innovative mechanism of conditional (concept)-driven clustering. It is shown that the initial phase of the process is guided by the formulation of some generic (say, low profit) or some complex multidimensional concepts (say, poor quality of environment or high stability of network traffic) all of which are described by means of some information granules. In the sequel is explained by other variables through clustering focuses by the context. The description of concepts is delivered by a logic expression whose calibration is completed by a detailed learning of the associated logic neural network. The constructed network helps quantify contributions of individual information granules to the description of the underlying concept and facilitate a more qualitative characterization achieved with the aid of linguistic approximation. This form of approximation delivers a concise and interpretable abstract description through linguistic quantifiers. 
A detailed example of enhancement of interpretability of functional rule-based models with the rules in the form “if x is A then y =f(x)”. The interpretability mechanisms are focused on the elevation of interpretability of the conditions and conclusions of the rules. It is shown that augmenting interpretability of conditions is achieved by (i) decomposing a multivariable information granule into its one-dimensional components, (ii) their symbolic characterization, and (iii) linguistic approximation. A hierarchy of interpretation mechanisms is systematically established. We also discuss how this increased interpretability associates with the reduced accuracy of the rules and how sound trade-offs between these features are formed.



 

 

Supply Chain Before, During and After the Pandemic

Constantin Blome
University of Sussex Business School
United Kingdom
 

Brief Bio
Constantin Blome is Full Professor of Operations Management and Associate Dean for Research at University of Sussex Business School, and Kronos Group Endowed Chair at UCLouvain, Belgium. He is also Co-Editor-in-Chief of International Journal of Operations & Production Management. For his academic work, Constantin received several awards, most recently the Global Highly Cited Scholar Award being among the top 1% highly cited scholars in the field. Constantin's research interests include supply chain management, procurement and operations management with strong focus on sustainability, innovation and risk issues.


Abstract
The pandemic has changed the world and the research landscape in supply chain management. In the talk we will revisit extant research and try to understand future research avenues in the new normal. The aim is to reflect, critique and understand which immense opportunities lie in front of us, but only in case we as researchers also adjust.



 



 


footer